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SUMMARY

A brief review of the Ikenberry-Truesdell method of solution of the
Boltzmann equation is given, in which emphasis is placed upon the proce-
dure called Maxwellian iteration. Corrections to the various iterations
are made. This approach is then applied to the problem of shock-wave
structure. A series solution of the type used by Grad for his equations
and by Talbot and Sherman for the Chapman-Enskog equations is used to
find the velocity and temperature profiles for a steady, plane, shock
wave in an ideal gas of Maxwellian molecules. The results are not sig-
nificantly different from the Navier-Stokes soiution of the same case.
The advantage of the present method of solution of the transfer equation
lies in the fact that the form of the distribution function need not be
specified.

INTRODUCTION

The Boltzmann integrodifferential equation forms the basis of the
classical kinetic theory of gases, Its modern, rigorous derivation is
the work of Kirkwood and Grad has discussed its validity. Both of these
approaches are well discussed in references 1 and 2 and a more elementary
treatment is given by Patterson in reference 3. The unknown function in
the Boltzmann equation is the distribution function F(ijE:t) which
gives the number of molecules per unit volume of phase space at position
¥ and time t with velocity 'E. Except for the simple Maxwell distri-

bution function, only approximate solutions of the Boltzmann equation
have ever been found.

Actually, for most problems in aerodynsmics a knowledge of the
distribution function yields more information than is necessary, since
only the gross properties of the gas are wanted and can be given any
experimental significance. These gross or macroscopic properties are
the absolute temperature T, density p, and stresses pij, pijk’ o« o oy

Pijk...m which are moments of either the absolute molecular velocity



or the relative molecular velocity taken with respect to the distribution
function over all of velocity space. The use of these moments and the
derivation of the differential equations which they satisfy is called

the Lagrangian formulation by Mott-Smith (ref. k).

Instead of attempting to solve the Boltzmann equation itself in this
Lagrangian approach, the Boltzmann equation is multiplied by a function
of the molecular velocity components and integrated over velocity space.
The result is Enskog's equation of transfer which is a generalization of
a similar equation developed by Maxwell; it is also called the general
"equation of change" (ref. 2). In the original derivation by Maxwell of
the moment equations as well as in the subsequent method of Chapman and
Enskog an explicit form of the distribution function F was assumed and
this function was a solution in a certain sense of the Boltzmann equation
itself. Grad (ref. 5) also used the same distribution function although
he interpreted it differently; he indicated too how the equations might
be derived without knowing F explicitly.

This idea of obtaining the equations relating the Lagrangian moments
from the transfer equation without specifying the distribution function
has been carried through in its ultimate form by Ikenberry and Truesdell
(ref. 6). Although their paper is well written, it is long and contains
a great deal of mathematical proof and development which, although essen-
tial to the derivation, is not necessary in order to develop the results.
As the authors point out, the ideas are simple and the calculations,
although long and elaborate, do not involve any advanced mathematics
other than a knowledge of formal operation with tensors. Hence the
present paper will give the formal development of the basic equations,
and then use the method which Ikenberry and Truesdell call Maxwellian
iteration to obtain the equations of one-dimensional steady flow which
will be solved by Grad's method of series for the plane, steady shock-
wave structure. Reference 6 contains eight different methods of itera-
tion but only one is used here; it is more completely discussed than the
others and is the first method given in reference 6 and thus it is neces-
sary to use only the results of the first chapter of that reference.
Also there are a few mistakes in the expressions for the collision inte-
grals and some of the iterations in reference 6 will be presented in
correct form herein.

The molecular model used is that of Maxwell, in which the molecules
are point centers of force repelling each other as the inverse fifth
power of the distance between molecules. The shock-wave structure prob-
lem is the only one solved since it does not involve boundary conditions,
which would require a knowledge of the distribution function if they are
to be formulated. The distribution function is not known so no explicit
form for it is given anywhere in this paper.
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SYMBOLS

constant coefficients in shock-wave solution

constants taken from equation (7.22) of reference 6

distance from first molecule to initial asymptote of
second molecular path in a collision

collision integral
magnitude of intrinsic velocity vector c

. < N M - - -
intrinsic velocity vector, c = c¢j,cp,cz =& - u

specific heats at constant pressure and constant volume

aui
divergence of velocity, — = uj g
Xi
R . . 1 1
deviatoric rate of deformation, §(ui,j - uj,i) -z Ed;

specific internal energy, cyT

molecular distribution function

constant in inverse fifth-power force law
constant ratio of viscosity to temperature
Boltzmann's constant

differential transfer operator; also, length parameter
in shock-wave solution

Mach number of flow

mass of molecule; also, constant of integration in
shock-wave solution




Pr

P2r|s

Por| = Por|0-Fs

number density of molecules
constant of integration in shock-wave problem

pressure deviator or excess pressure tensor

Prandtl number of gas, ucp/A

spherical moment of order q = 2r + s, pTers
= Pols where s = 1112 NP S

static pressure

_) .
second moment of F(g), pressure tensor

—’
higher moments of F(g) with respect to intrinsic
velocity e

constant of integration in shock-wave problem
order of moment, 2r + s

heat -flux vector

specific gas constant, k/m

intermolecular distance; also, power of ¢ in Y2r|s
degree of homogeneous spherical harmonic

absolute temperature

time; also, dimensionless temperature in shock problem
x component of u

-—3
velocity of gas, the average molecular velocity, ¢

relative molecular velocity before encounter
dimensionless velocity in shock-wave problem

specific momentum of molecular pair

W - X
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X coordinate x;

= xl’xe’XB position vector in three dimensions

Y particular value of dimensionless coordinate 7

Yg homogeneous spherical harmonic of order s = i;i, . . . ig

Yor (O = Y (C)

y coordinate x,; also, dimensionless form of x coordinate
2 coordinate X3
a ratio of thermal conductivity to viscosity, %? R
B dimensionless form of specific entropy
y ratio of specific heats, cp/cy
_Jdl, 1=
Sij Kronecker delta, 5ij = {0, i # 3
Smw maximum slope thickness of shock wave
€ angle between plane of ¥ and V' and a reference

= N -
plane through v; also, a shock-strength parameter

M specific entropy of monatomic gas; also, dimensionless
coordinate in shock-wave problem

8 encounter angle related to @

Aq mean free path of gas upstream of shock wave
A coefficient of thermal conduction of gas, ap
u coefficient of viscosity of the gas, KT

E’: gl,§2,§5 absolute velocity vector of molecule

o} density of gas, mn




T dimensionless temperature

angle between V' and ¥ in a molecular collision,
n - 20

¢
< - © 00 ~ 00
j * e e d§ =f dg}f dgzj .« o . dgl

| separates indices 2r and s on functions Y2rls and

Por|s

) mean or expected value defined by equation (2)

(_3 vector

Subscripts:

0,i,2, . .. order of approximation in series

i,f initial and final states for shock-wave flow

,1 partial derivative with respect to xy

or indicates factor c2T in polynomial

s s indices 131, . . . ig

* reference condition in shock wave corresponding to M = 1

() around subscripts indicate sum over s!| permutations
of s 1indices divided by s!

Superscripts:

. : ; . . . D
(fgh) or f hydrodynamic or material derivative, o

(r) = (0),(1),(2), . .. order of iteration
* second of a pair of molecules

values after molecular'collisiOn; also, ordinary deriva-
tive with respect to x or 7
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EXACT RELATIONS BETWEEN MOMENTS AND EQUATION OF TRANSFER

For a moderately rarefied monatomic gas the number density of mole-
>

cules at position X and time t with velocity g is given by the

distribution function F(x,g,t). The number of molecules per unit volume
of X space is then the number density

n(x,t) sf F(X,E,t)dE (1)

where the symbol Jf .« .. dE’ represents the triple integral

L/j ng /P dgg\jp - - dgq. The mass density or, simply, density of
the gas is then =mn where m is the mass of a single molecule.
Only simple gases w1ll be considered; therefore, m is a constant in

this paper. The mean or expected value of any functlon Q(x t) is
defined by

nﬁswaFdE’ (2)

In particular, if Q = &;,

—
N
~~

R I
ulEE:L:%J giFdE’
©

are the components of the average or mass velocity a.

In the Lagrangian formulation all additional mean values are just
those of the various products of the components of the intrinsiec or
peculiar velocity defined as & =E - T or

cy = §i - uy (4)

Then the nth moment of F is defined as

-
D. . = pC1.Cq, - - - C1 = mk/w cj.€y. - - - ¢y Fae (5)
i1is...dp 1712 n w 112 1y



Because of the definition of c¢j3 the first moment

p; = pcy = m\/ c;F dg’= 0; the second moment

]

e -
pij = pC.Cy = m‘/; cijeF dt (6)

is the pressure tensor; one-half of the contracted third moment

1 = c.c.F At
Q3 5 pijj =3 J; cchCJF dg (7)

is the flux of energy or heat-flux vector; and the third- and higher-
order moments have no special names.

The contraction of the pressure tensor gives three times the scalar
pressure

2 -
5p§pii=mf cF dg (8)
00
Thus if the absolute temperature is defined by

RT = (9)

o |

where R is the gas constant per unit mass, the temperature can be
written as

T=.3Lan c2F At

Also a divergenceless pressure tensor which Ikenberry and Truesdell call
the pressure deviator is defined as

Pijy =Pjj - POy (10)
so that the contraction Py = 0.

Although both the vector notation and Cartesian tensor notation
have been used so far, the latter will, in general, be adhered to as much
as possible. This tensor notation includes the use of the double summation

=W -
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convention pii = i pii’ Pikki1 = i i pikkll, and so forth. No

i=1 k=1 1=1
special form for F has been assumed or will be necessary. Only the
existence ahd differentiability of the moments are going to be required.

The equation of transfer will not be derived since it can be taken
from reference 1 (p. 209), reference 3 (p. 20), reference 5 (p. 362),
or the well-known treatise of Chapman and Cowling. In the notation used
by Ikenberry and Truesdell this equation is written in the symbolic form

L(Q) = mC(Q) (11)
where
I R 3 X —
1() = ()Q) " + PRE + uj, jpcy 5y~ P13t 55 " (e1@) 4 (12)
and

c(q)

v ' o0 nen
f ae f ag* fo b db j de BQFF*v (13)
[+ ] 00 O

Much new notation has been introduced here. 1In equation (12) the
dot denotes the hydrodynamic derivative

=2 ¢+ ( ),iui (1k)

the subscript comma denotes the partial derivative with respect to xy,
and

E=_—==uy 5 (15)

is the divergence of the velocity. The momentum equation

pij + Pyy 5 = 0 (16)
which normally follows from equation (11) when Q = cij will not do so
here since it has been used to eliminate wuj. In equation (13) an aster-
isk denotes the second of a pair of molecules, the prime denotes the out-
come of a collision, and b and € are standard collision parameters
whose precise nature need not be specified since the integrals involving
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them have been evaluated in reference 6 and only the results will be
needed here. Also,

5a = Q' + Q' - @ - @ = 2[(@¥)" - a*] (17)
and
2?=?*—?=:*—:
(18)
o0 =c*+ &

Conservation of momentum and energy during a collision requires that

- _
W =W

(19)
v=v'

. g -,
if v = Ivl and v' = Iv'l.

The apparent choice for Q would seem to be the various products
in ¢ which would lead to expressions for equations (12) and (13) in
terms of the moments P1112"'in' But Tkenberry and Truesdell point out

that this choice would lead to unnecessary complications which can be
avoided by taking for Q(g) homogeneous spherical harmonics in ¢ as
was originally suggested by Maxwell. Their choice of spherical harmonics
is the set of symmetric functions proposed by Ikenberry (ref. T):

Q) =1 )
—’
Yi(c) = ¢4
—-’
Yij(c) = cycy - % C2Gij
-—’
Yijk(c) = cje50y - % °2°(153k)
q
c

- 6 o2 P L
Yigale) = ejegepey - 3 (g 5(e)ty) - ']5' ©"8(15%)

J

-, -, 3 -
Yijklm(c) = ¢jC.cpc,cp - %? °2Y(ijk(c)81m) - 7 ch(i(c)sjkﬁzm)

and so forth, where parentheses around s subscripts indicate a sum over
the s! permutations of the indices divided by s!. Thus, for example:

6Y(ij8kl) = Ylekl + Yiksjl + Yilskj + YJkall + YJlﬁik + YleiJ

IS,
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and because both Y;j; and 8., are symetric, the 24 terms reduce to 6.

The Yg (c) thus defined, s representing a set of 8 1indices
1,,i, . . . 15, &€ the components of symmetric tensors which when con-

tracted on any pair of indices reduce to zero.

Let

Yor| (0 = ¢2TY(Q) (21)

and define the spherical moment P2r|s of order 2r + 8 = q by
T _ o2r, 2 -
Porls = Plop g = mjm cY _(e)F dc (22)

where 4¢ = dg’ and the integration is over all of velocity e space.
This moment of order q is a symmetric isotropic tensor function of
the qth moments and when contracted on any pair of indices it becomes
zero. It includes and generalizes the second-order pressure deviator
defined in equation (10). 'The calculations which relate the spherical
moments of equation (22) to the moments defined by equation (5) are set
forth in appendix A and the results are the following expressions:

7

Pij =Pij - P4y

P2| = 3p

Po|i= P1j3 = 2%

Pijk = Pijk - 2 g P11(1%3x)

Pijk1 = Pijkl - g = Pum(1%1) * Pmmnna(ijskl)

NV

(23)
Polij = Pijkk - 33‘ Prk1101]

Py | = Pkl

P =D -8, 5, \ + 2 5.5
ijkim = Pijkim = g Prr(1jx°mm) * 37 Prrss(i®jk°im)

Polijk = Priijk - % P11mm( 18 jk)

Pyji = Pillmm

1
Pylig = Pijiimm = 5 Prkiimm®ij

Pg| = Pxkiimm _ J
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with the inverse relations
Pij = Pig+ POyy = Pyy + § Pobyg
Pisk = Pijx * % Po|(1%3k)

Pizp = Po|i =29

- 6 1 ..
Piky = Pigkr * 7 Pol(1%1) * 5 PuIB(15%k1)
1
Pijir = Polig + 3 Fuldiy
Pexir = Pu . (24)

_ 10

Pijkim = Pigkim * 7§ F2[(15x0m) * % Pyl (18 35x%1m)
Pijkit = Folijk * % Py (183k)

Pikkii = Fyli

_ 1
Pijitmm = Fulig v 3 P18y

Prxiim = F6]
These are the only moments which are used in this paper.
In the transfer equation the function @ is now taken equal to

Yor|s 80 that the next step is the calculation of the L(Y2r|s) and

C(erls) terms. This is straightforward but increasingly lengthy as
q = 2r + s 1increases, insofar as L(Y2r|s) is concerned, and the results
are (as given in the original paper but with pij replaced by

Pyj + Pdij):

FOUiRE
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L(1) = o + pE
L(Yi) =0 = PiJ,J + p’i + pflj_
L(C2) = 31.) + 5pE + 2PijEij + 2qi’i

5 2

4 4
- 15 %,k015 * 5 4(4,9)

L(CaYi) = 2q;]_ + —39 QiE + 2PijkEJk + 2un1 J + g q:,EiJ - 5_P Pij,,j
2 1
- Zp - S PPy - Bp,y ¢ Pal1,5 * 5 Ful 1
. 6
L(Yig) = Pagic * Pogi® + 3Po(15%),1 - 2 Pom(100k) Em + 2 9(4By)
24 q.E, (45 --P P _ip Doy + 2 P8P
"~ o5 W*1(1%5Kk) (15K)1,1 ~ 5 “{1d%,k) ¥ 55 T1(1%5k) im,m
6 6 3
* 55 Pu(a®x)P,1 * Pigka, - 35 B(asFalk)1,1 * T Fo|(44,k)

A 8 8
L(C ) = P)'I’I + ; PuIE + thliJEiJ - 6 qipij,,j - 6 qip,i + P’-l»'i,i
2 : .

14 2 2
21kBa®iy * 15 PPy - 5 FigkPra,r - 5 ikl x

28 8 28
_& o L(1F9)k,k - 55 4P, ) * S P, 1015 * T55 WP, kP

2
Pol1gk,x = 15 Pk, kb1 * & 5 Ful(1,4)

L(cth)—Phli+1PlE+P + 4P

8
4]3%,5 * *Foligfi 5 Ful s

L 4
37p 4l P1y,5 - l S FuIP g = 5 FaligPork - 5 F2l1sP, 3

+ P’-&!ij,j + % P6l,i

13

(25)
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and so on, ad infinitum. The new symbol Eij is the divergenceless
rate-of -deformation tensor or deviatory rate of deformation defined by

1
Eij = 5(\11)3 + u,j,i) - %- Esij (26)

A sample calculation given in appendix B illustrates the method of
finding the expressions in equations (25). Note the presence in these
expressions of many terms involving permutation of subscripts, such as,
for example, the last term in L(Yijk) which is

3 _ 1
7 F2)(13,%) = T(P'rzlia,k * Polgi, gt leak,i)

and the term in L(Yjj) which is

= L .
2Pk(iuj),k = 21(2Pk1uJ’k + 2ijui,k)

The calculation of C(Y2r|s) depends on the evaluation of certain

integrals whose values are functions of the molecular model chosen.
Ikenberry and Truesdell discuss the problem for arbitrary models and
set up a systematic procedure for Maxwell molecules which repel each
other as the inverse fifth power of the distance. Now a Maxwell gas
is an ideal monatomic gas with the equation of state

p = RT = nkT (27)
where R, the specific gas constant, is equal to the Boltzmann constant

k divided by the mass m of a molecule. For this gas the specific
heats at constant pressure and constant volume are constants given by

cy = % R and cp = % R so that

7= "3 (28)

(29)

]
W
0
<l—:'!
]
V]
=
i
N I\
fel o]

while the specific entropy is

n=R-Z-108e;5P73=RB (30)

g N
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where

=21 1
B eogepwg (3)

is then a dimensionless form of the entropy. Both the coefficient of
heat conduction A and the coefficient of viscosity W are then pro-
portional to T and these relations will be written

A =ap
(32)
u = KT
with
_ 15

Consequently, the Prandtl number is constant and is equal to 2/3 since

Such a gas is a very close approximation to actual monatomic gases at
room temperature and above until internal degrees of freedom are excited
or the gas becomes ionized.

For the Maxwell gas Ikenberry and Truesdell evaluated the integrals
and arrived at certain constants B;, Bp, and By which depend upon

the constant G 1in the intermolecular force law f = Gr-?. These have
the following values:

B, = \[%(2.6511) - 2.6511\’—;-
s G = G

B, = 3&(1.3705) = )+.1109\I; L (35)
- o0& - G

B, = 2\1’;(1;.9087) 9.8171+\I;

7

with nBp = p/u. Because of this last result and the fact that the col-
lision integrals are homogeneous functions of the constants B, it is
possible to write the results in the following form:



mC(1) )
mC (Yi) =0
mC(cz) =0

mc{c?Y; ) = - ;*_ﬁ aj
(Y13x) Zﬁ 13k
me(ct) = - %(QPM - 15p° + PlJPlj)
mC (czyi 3) 61;:“ [Pikij - % Py1Pi14 ‘]])

[t}
]
P
O
W
n
H‘
<
'
Le]
lav)
’_l
C
+
WogE

v

1p By, 4
mC(Yig) = - u( 2)Pigk1 *Te %( - —)[ (1F%1) = 7 Pu(i®5xF1)m

28 2 28
(chY ) on (ppul -5 Pt Pagdfk t 35 9 13)

B
2
w0 (g ) = - —(19 v e —)Peluk BC ‘3( - B_Z)ppijk

3 By, 2
" Tip ﬁ( - 'ﬁ'é)(Pl(ink)l -5 szsz(i5jk))

% (1562 .2 5.
* 3501 (15 6 Bg)(q(ipjk) 5 qlPl(ls.Jk))

(35)

All but one of the above equations agree with the expressions in refer-
ence 6, and the one which does differ is worked out in appendix B as an
example of the calculation.

Setting the expressions in equations (25) equal to their corre-
sponding integrals in equations (36) leads to nine exact equations

=W X



F N o,

17

of transfer; if the calculations were continued, the number of such
equations would increase indefinitely. The first three equations
obtained are the well-known equations of continuity, momentum, and
energy while the fourth, fifth, and sixth equations have been obtained
before, notably by Grad. However, no one has attempted to use the full
set of exact equations. Instead some scheme of truncation like Grad's
or a form of iteration is used. The latter leads to sets of approxima-
tion equations like those of Burnett. Ikenberry and Truesdell suggest
a simple scheme of iteration, which they call Maxwellian iteration, as
well as variations of this scheme. Only the Maxwellian iteration method
will be considered in detail in this paper.

MAXWELLIAN AND OTHER METHODS OF ITERATION

Maxwellian Iteration

Maxwellian iteration is discussed throughout chapter 1 of reference 6
and what it amounts to in the final formalization is as follows. Replace
the exact equation of transfer (11) by the equation

nc(n+1) gy - L(n)(q) (37)

which indicates that the n + 1lst iteration for mC is obtained by
substituting the nth iteration into L. In order to get started some
initiation scheme must be proposed and this must give the Navier-Stokes
equations to begin with. Maxwellian iteration, as defined by Ikenberry
and Truesdell, then starts with the agreement that to the zeroth approxi-
mation

(0) 0 if s #£0

P = 8
orls (or + l)!!p(%)r if s =0 (38)

and takes the functions Q@ in equation (37) to be Y2r|s in order of

increasing 2r + s and, for fixed 2r + s, in order of increasing s.
Thus most of the zeroth iterations vanish; for example,

p{0) _ o
ij
(0) (0)
9 =Py T

(0)
P = O

0]
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The only nonzero iterations which occur in equations (25) are

PO -3

(0) p2
By’ =15 %

(0) p2
P =
6l =1 02

since (2r + 1)1! = (2r + 1)(2r - 1)(2r - 3) . . . (3)(1).
Except for the first three expressions in equations (25), which are

satisfied at all orders of iteration, the expressions to the zeroth order
are

L(O) (YlJ) = 2pEij

2
(0 (c2y,) - - Lopy+ 5(2-) = %-apT i

p : T 4
since equation (27) gives = + é and — =R = —=
p
(0)
L (Yijk) =0

(In fact, according to Ikenberry and Truesdell, all L(O)(Y2r|s) =0 if
s 23 so it follows that

(0)
LY (Y1) = O
(0)( .2 -
L (c Yijk) =0
although these last two were not included in equations (25).)

2\" 2 2 .
L(O)(ch) = 15(%;) + 35 %; E = 20 %; 8

(since from equation (31) B = 2P % % while continuity gives E = - L

2p o
0 2
(0) (o p? p’ p’
L Y ) = =35 = + =70 =T .
() e v P

(39)

W

FWH X
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When one substitutes these expressions into equation (57) with
1 = 0 and uses the values of mC(YErls) given in equations (36) the

following set of equations for the first iterations results:

p(1)

_ﬁ i3y = 2PEij
Sk =0
Bpu( l(ﬁ) - 159° + g) S)> =2 % B

ﬁﬂ,m O &(pﬁl)p(%) IRCONENY ﬂ Ly
6ou T +J P

2| ij ik “kj 3 ki kl

B
b b P(l) 5p
B M_LI(6 * —]32> ijkl + m(g B B2>

()()
Pron Pan (1j5klﬂ =0

p(Dp(1) _u (1) (1)
(iJPkl) 7 Pm(isjkpl)m

5
-\ f
- ..P_( __. q(l) SL)P\,
PL J

p(1) 9p B\ (1) 3 B\ [ (1) (1)
- %(19 + 2 2> 21k _5_<1 - §§>Pijk - 2_0(8 - '1g><Pz(ink)z

p(1)p(1) 9 4 (1) p(1) (1)p(2)
- &P m(ﬁ;k)) <13 -6 2) (‘1(1 Fix) ~ % 4 Pl(isjk)) =0

These algebraic equations are easily solved with the result that
the first-order iterations are:

= -2uE;; (40)

= —CL}J.T’]'_ (J—l»l)
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p(1)
iJk =0 (42)
(l) 1 2 s
| = (15p - Ly Ei,jEij - BOupB) (43)
(l) up l6p.2 1

(1) 2[2B, - B 4 2
Figk ~ li“ ( : h)( (15%2) = 7 Fn(®3xFr)m ¥ 7 Emn® S(if’kl))

6B2 + B)-J» 35
(45)
p(1) oyip 5602
Pujp = 72855 T1 - 5 Bty (1e)
(l) 36ap2 13B, - 6By 2
2|13k >p \19B, + 2B (E(iJT,k) 5 T,lEl(isjk) (47)

The first six of these equations are identical with the values given in
reference 6 but the last two have slightly different numerical coeffi-

cients because of the use of the correct value for mC (ch'Yi) and an
apparent typographic error in the last iteration.

The first two of the iterations (egs. (40) and (41)) when substituted

into the first three of equations (25)
b + pE = 0 1
Pig + P g+ Pyy 5=0 [ (18)

Bﬁ + 5pE + QEijPij + qu’i =0

J

which are the equations of conservation, give the Navier-Stokes and
energy equations for an ideal monatomic gas

o+ pE =0
pig + Py = 2(kEqj) , (19)

3p + SpE - buEisEiy - 2(NT 1) 4 = O

J
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In order to find the second iterations, insert expressions (40) to
(47) into the remaining of equations (25) in order to obtain (1) (Y2r|s)’
then set these equal to the corresponding terms mC(er| s) with super-
script (2) on all of the moments according to the equation

mc(2)(Y2r|s) = L(l) (Y2r|s)

The procedure is straightforward but the calculation is long, so the
details will be omitted here. The results are:

(2) , 2u 2u2
Pij = '2“Eij + —-( 13) > EE Ek(l 1),

Ekl k101 E[B(“T,(i),j) - (“T,k),kbij] (50)

q§2) - T |+ %_“(ptr ;) + 1'2*;—2(5Er,i + 3uy 4T g+ BE(4T )
¥ %(“Eij),J - %‘;—2 Bygp, g+ som(WTB) 4 + Ff‘(—e EiJEJk) K
+ %(&:' EjkEJk),i + %%2' Ey (M€ 51c) x (51)
Piix); = % T,(1B5x) - ;i—;g T,1E1(i8 k) + 9“— E(1(#Be)1) 5
162

5p:; B2(18 %) (Fim ), - 5(“ 8(1JEK)1) Lt l*“( E(ij)

6l |l u2

21‘;1’[“ (iJ(Ek)l m "3 5k)anrs rs)] ZS;[ ( (1B
232 - Bl;

% EmnEmnS(iJ)] k) - §E(6132 " Bu>[ ( (13F%1)

% En(i®5xE1)m + % EmnEmnS(ijskl)):l ,1 (52)
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These iterations are the same as tnose given in reference 6 but the
next two are somewhat different and therefore correct the errors i
equations (11.4) and (11.5) of reference 6. They are:

2

(@) 152 _1p(@p(2) 6wy 5 V4 1 b
Ful P pij 1)  P\P 1j1j pp 13 1J

. 2 >
pu .
-3 2£ 8+ 45 -pET-(pTB) + 105 Ep_ ES + 84 }% Ey 4By

96 u3 p2 315up

+ 2R E R E L -5 BT D + 2282 (uTT 4)

1373k ki iP 1 i/,1
7 PP Jd p2T ) ’ 202T2 4 ’

ul 2
vl

(2) Hp . 2 . 2
14 22 .. =2 . .
14 - Eqj + 1b (p.EiJ) + 32 p Eqj8 + 1k }:)_ EE; §

2|1J
+ 28 'S E, (:u + 25 292 “
5 Bk (1)) ,k "7" 5 ikEkJ a1 5 ExaBia®i;
b [L.(2) (2)  _(2) (2)
- = [spo/p) P B
21p< ik Tk k1 Tki 01 18 e E L 6 5 2 PP

2
+56ELT1 . -12EP po7 s, 4+ 39 BR (7 .
Jj k*,k°i HEo(1

ng 217 p2T2 1Ky J p2T(  ( ):J)

*

<13 B )y + 35 3 0B - BBt

p=T
+ @ p‘_3 E(jE-kEk- - Ex1Ex 81') + @ -LB 3E, 1 E 5
7 25 ik j 1°15) * g pp( k1%1(1 = Emn®mn k() u5),k
16 2
+ = B OLOE:, E.,E 63E i,
1715 1o ( ikEj1Bky + 203Ey BBy 220Ek7,ElmEmk813)
¥ 5pT[5(o T,kEk(i>,.j) " b T,kEk1>,1513 . [BT,(i(“EJ)k),k
) 12 p (1) 6u (1)
T,k(“Ekl),Zaij] -7 3 PP 7 75 Popagk (54)
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The oth d iterati P(z) P(2) d P(g) t
e other second iterations 1jk1 hli’ an 2|13k were no
found because they are not needed to obtain the third iterations for

PlJ and q4, .and, because of the great length of the calculation, it
was carried just far enough to obtain P 5) and q.5) whose values

turn out to be, in agreement with equatlons (12.1) and (12.2) of
reference 6,

3 . _[(2) a5t
P

1J iJ

(2) (2) (2)
2Pk(l . , + EPElJ - % Pyy Eklsij

(2) (2) L (2)
Pisk,x ~ 1; %,k%15 7 5 q(i’j)] (55)
(3) _ (2) (2) (2) (2) 8 (2)
u~ = up[ 3 Eqy ijkCge ¥ 29y Yy gt 5 9 i
sp p(2) _ 5p 2,2 2 (2 o(2) 1 (2) ]
"o T, T P o e T 5 Py Pyt 2|13,3+3P4I,1J

(56)

(2) (2) g (& P()
i > le: 2| Y

equations (50) to (5&), the third iterations for Pij and ai will

now be had in terms of the quantities of state p, p, T, and ujy.

Using these third iterations in equation (48) will then give a system of
five partial differential equations which are similar to the Burnett
equations.

Upon substitution for P from

This is as far as the method of Maxwellian iteration is carried by
Ikenberry and Truesdell and as far as it will be carried here. Neither
the initiation agreement (38) nor the method of iteration defined by
equation (37) is the only method possible, and it could be that a better
approach is possible.

Other Methods of Iteration

Ikenberry and Truesdell also propose the following methods of
iteration:

(1) Atemporal Maxwellian iteration. This method is closest to the
Chapman-Enskog process and gives the Burnett terms but is rejected by
the authors of reference 6 because it adds unnecessary complications
to the simpler method of Maxwellian iteration.
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(2) Grad's method. This is Grad's method of truncation of the
exact equations found above; by setting L(Y2r|s) = mC(Y2r|s) the equa-

tions of Grad can be found for Maxwell molecules. Thus if
Piskr = SFT(2P(15%%1) - PP(13%k1))
Grad's 20-moment approximation is obtained, and if, in addition,
Pijk =0
the Grad 13-moment approximation is found.

(%) Integral iteration. This is a modification of iteration
equation (37) which requires an integration to be performed at each
step. It also requires a knowledge of initial values of all the moments
used. Even when linearized, the resulting equations remain too complex
for actual solution so some scheme of approximation is still necessary.
The method does not seem to be any better than the Maxwellian iteration,
although it does give a correct solution to the problem of time-dependent
shear flow. In a personal communication, Trusedell expressed the belief
that integral iteration is better than Maxwellian iteration in that it
probably leads to the general solution of the initial-value problem.
However, aerodynamicists are more concerned with the steady-state problem.

(4) Scheme using maximum available informdation. This is a varia-
tion of Maxwellian iteration where at each step the highest known itera-
tion is used. It has the advantage of introducing higher-order terms
faster than Maxwellian iteration introduces them.

(5) Iteration by powers. This is similar to the Hilbert-Enskog
expansion in powers of a parameter which is finally set equal to 1. The
resulting equations have fewer terms than are necessary in Maxwellian
iteration.

(6) Truesdell iteration. This is suggested as the name for what
is called in reference 6 "a scheme which treats algebraically like terms
on an equal footing." Instead of obtaining iterations which are essen-
tially expressed in increasing nowers of u, such as in the other schemes
including Maxwellian iteration, this treats all of the terms in each
equation of transfer alike. Only the higher moments and the time deriva-
tives are replaced by approximations. The result is that each iteration
is a rational function instead of a polynomial in p. This scheme shows
considerably more promise than any of the others and one attempt to apply
it to plane Couette flow is given in reference 8. Trusedell finds that
it is also best for the case of time-dependent shear flow.

=TS
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(7) Iteration in equations of moments. This is a variation of
Maxwellian iteration which has a different initiation agreement. It is
not developed or used in reference 6 and does not appear to be any better
than the Maxwellian iteration.

(8) Iteration from free-molecular flow. This method starts with
the initiation agreement that the zeroth iterations are the values of
the moments of free-molecular flow. However, it is not developed, and
elsewhere in his paper Truesdell effectively shows that the whole kinetic
theory as based upon moments is certainly not appropriate for free-
molecular flows.

It would appear that the method of Maxwellian iteration is probably
the easiest method to use in theoretical aerodynamics if a solution of
equations (48) is wanted. Actually, the exact equations of transfer are
equivalent to the Boltzman equation; a nonlinear integrodifferential
equation is thus replaced by an infinite system of first-order nonlinear
partial differential equations and for problems in continuum or near-
continuum flow the latter are certainly more appropriate. The question
of boundary values for an infinite set of moments has not been and prob-
ably cannot be settled because of the lack of physical significance of the
higher moments. Thus it is necessary in any physical problem to resort
to some sort of iteration so that these higher moments can be expressed
in terms of the physical variables of state and their derivatives. Even
then the question of boundary conditions on these variables has not been
fully answered since a proper formulation of boundary condltlons seems
to depend upon a knowledge of the distribution function F(X,E,t) in
the neighborhood of the wall where the boundary condition is taken.

To gpecify F would not be in the spirit of the above theory, which is
independent of F.

There is one problem of great physical interest for which boundary
conditions are not required and this is that of the structure of a
steady, plane shock wave. Even though this problem leads to one of
the simplest forms of the equations, the equations are still very com-
plex. Still an approximate solution can be found, and it will be
presented in the next section of this paper.

STRUCTURE OF PLANE SHOCK WAVE

Derivation of Equations for Plane Shock Wave

The macroscopic differential equations (48) for a Maxwell gas with
the pressure tensor and heat-flux vector given by the third Maxwellian
iteration (egs. (55) and (56)) can be used to calculate the thickness
of a plane, steady, shock wave as suggested by Ikenberry and Truesdell
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(footnote P. 41, ref. 6). Their suggestion was to go only as far as the
second iterations for Pij and qj. Talbot and Sherman (ref. 9, p. 16)

refer to a series solution they found for the extended Burnett equations,
although the results they give are those of a numerical integration. The
numerical integration is so much better that considerable doubt is

thrown upon any series solution. Since only the series solution of the
Ikenberry-Truesdell equations was found, however, the method used and
results obtained are reported upon here.

Since the original series method of Talbot and Sherman included
linear terms from the third-order Burnett approximation, it_was con-
sidered desirable to go further and include all terms in from the
third Maxwellian iteration. These turned out to be quite numerous
and added some complexity to the calculations but still the labor was
not so great as it would have been if all of the third-iteration terms
had been included.
Mr. Richard A. Gregory, carried through the derivations and calculations
more or less independently until the same results were obtained. Thus
the results presented here are considered to be correct within the limi-
tations of the series method.

In the one-dimensional steady flow of a gas there is only one space
variable x7 which is denoted by x and only one component of the

velocity vector wu; denoted by u. The hydrodynamic derivative reduces
to

() =200 -y a0) 0y
Dt dx

so that the equations of conservation (h8) become
up' + pE =0 1

puu' + p' + Pyy' =0

Both the author of this paper and one of his students,

P.,' =P.,"'"=0

Xy

3up’' +

The prime denotes differentiation with respect to x.

Xz

5pE + 2P

1
13B15 * 2%

Since

(57

FUE =
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E, =E

vy z2

I
]
O
t=
]
]
N -
c

Exy = Byp = Eyz =0

where subscripts x,y,z denote the subscripts 1, 2, 3, respectively, of
the tensors Pjj and Ejj, equations (57) reduce to

w
fl.(pu) =0
dx
d 2 —
a(pu +p+Pxx) =0 F (58)
Zup' + Spu' + 2[% u'Pyy - % u'(PW + Pzz)} + 29y’ =0
J

The first two equations have the integrals

pu = m = Constant (59)

24+ p+ P, =P = Constant (60)

pu XX

and since P + P + P

XX vy zz = 0, the third equation can be written

"

%(up)' + u'(p + Pxx) +q,' =0

Using equation (60), this becomes

i
(@]

a3 up + uP - 1m 4 qx) =
dx\2 2

with the integral

3 1 5 14
5 up + uP - 3 pu” + q, = > Q = Constant

Eliminating P between this equation and equation (60) gives the energy
equation

Sup + puo + 2uP,, + 2q4 = Q (61)

Since p = RpT the three equations (59) to (61) reduce to two:
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mRT _
mu + _E— + Pxx =P

(62)
SmRT + mu? + 2uP, + 2q, = Q

which indicate explicitly that the problem involves only two unknown
functions u and T of x which have to be found. PFirst the appro-
priate iteration for Py, and Qy has to be found and substituted into

equation (62).

The first iterations given by equations (40) and (hl) are

1
Pix) == % pu'
(1) _ .
qx = —auT

Introducing these into equations (62) gives the Navier-Stokes equations
for the simple one-dimensional flow. The second iterations are given by
equations (50) and (51) which, when they are written for one-dimensional
flow and like terms are combined, will give

2
P)(ci) = - % pu' o+ ;—; u(pu') ' + %—u'g + %—%(uT')'

2 2
q(2) = —aqur' 4 2 u(pT') ' + 2007 vty 2h(gu') ' - 28 gy
X 2p 3p P PP

- It
* (HuTp*) * i p(u) +5ppu(uu)

Evaluation of the derivatives in terms of those of just u and T by
means of the formulas of appendix C reduces these iterations to

2 2 2 : 2, 2w
P(2)=-£uu'+u“ w4 288 a2, W gt 205 o2 207 g
xx 3 5p 9p 3T oTe pT
(63)
2 2 2 2
q(2) = ~auT' + o7y g 2 (yr)2 4 20T gty 1BOHT ()2
X 2p pu LT 8 T2
P
2w > 3 b
4 A55uT et 200u7 e, 220 (u')d ¢ 200U ()2 (64)

8pT 21pp 21ppu 21peT

ESAC R >
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These expressions are quite similar to the corresponding ones in equa-
tion (B7) of reference 9, yet they differ significantly, especially the

expression for qx2 . It is seen that Maxwellian iteration is not in

powers of p as the last three terms in equation (64) show. The third
iterations will include more terms in u3 as well as some terms in u

As equations (55) and (56) showg the third iterations depend on the

, (2) (2) (2 (2) 2 C
second iterations Pij s 95 Ple, 2115 and Pﬁl) which in turn
depend upon a knowledge of the first iterations ( il and Pé}ijk

Even for this simple case the number of terms in all of these iteratiomns
becomes tremendous, yet the calculation is straightforward although time
consuming. Since Talbot and Sherman originally included terms linear in

w3 but not all of the terms in p> and none in ut for the Burnett

equations, it was considered sufficient if all terms to u5 in the third

iterations for P and q, were included but no terms in up%. Then

2

in the second 1terat10ns above only terms in p© need be retained and

the first iterations Pg%) and P}
ijk 2|

themselves proportional to p-.

will not be used since they are

The third iteration for this one-dimensional flow according to
equations (55) and (56) becomes

. (2) (2) (2) (2)
P)(c?c) == §<u % Pyx + 3u'Pyy + % pu' - = Eklpkl % P exx
8 (2)
+ i % a, ) (65)
(3) 3uf 5p . (2) . 32 , (2) (@2)g 5p d (2)
N __Z;L:(_,ppp +2u—qx +?uq +2PxJka dexx
v _(2) (2) (2) (2) (2)
- E%_ P - % Py é% Poy + = Poixx + % é&'Phl ) (66)
In equation (65)
1 2 1 2 2 t (2)
Ekl fj) = % u P:(cx) - %u <P§ry) + Piz)) =u'P




30

since
(2) (2) (2)
Pyy + PZZ = -Pxx
Alsc
(2) _ (2 1 (2 2 2
Pyy =P, ='§Pxx --3-p.u'+0(u )
so that

(P)(f()>2 ) (Pg))e ) % W2(u)2 + o(u3)

where 0( ) denotes order of.

From equations (52) to (5&), retaining only terms in u2,

2 2 2
P(2) = §E_ u" + §E_(u')2 + &E— u'T' + 0(#3)

XX 5p Spu pT
2 2 2
P(2) = P(2) Sk e EE—(u')2 - 287 ey O(us)
xyy xzz 5p 5pu pT
2 2 2
P(2) - .28 w4 287 uu" +.§§Z§ E—(u’)g + 124y wu'T’
2| xx 3 p 3p 63 p 5pT
2 2 2
F12 BB pipe 38 R (01)2 | 5 KR e o(u3)
p2uT p2T2 04T

2 2 2
p(2) _ 15 B2 - 30 BBy -y BB ype 75 B ()2 4 ys BT g
| P P eT 3p P

2 2 2 2
+ 315 EE w'T' 4+ 45 HP e g 135u° u2(T')2 + 270 E—P-—(T‘)2
o

p2uT 2pT2 p2T
2 2
+ 135u UET" + 315 uep ™ 4+ 0(“5)
20T 2p2T

Taking derivatives of these iterations and the ones in equations (63)
and (64) is long and tedious; when the results are substituted into

ST 3]
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equations (65) and (66) and like terms are combined, the final forms for

sz) and qi5) are

(3) y 8uS(. 1\2 . hy? G 2
P = = = pu' + 2_}1_.(u') + 2H oqu" e 2 a4+ 28 (e 2
xx 3 F 9P 3p 3pT okl
+ _Eﬁ ™ _ &u; " - )-H.l3 u2um - 12 | wa'u" - 12U-5 u'u"
oT 3prp 3p2 p2 pou

q}((5) __ Lwr

b 3 3 >
%(u')3 - ﬁ._ u2u"T' - % u"r' - QO_IJ.__ u(u')ZT'
27p? 3p°T 5peT 9p°T

3 3
llOuB(u.)gI.. - 56P~Z u'(T')2 _ by u2u|Tn _ 330 oT'T"

3ppuT poT 3p°T peT
_ 56 1" 1l uT'" 4 O( ul#)
poT ppT
2
15up prop DT e, 2054C g 135w u(T,)E + 1357 v
4pT 2p LpT 80T 8pT
2 2 5 611547
K ( L Rl 251 w™ - S u'u" 2207w ( 1D 1917u
ou 2pp 28pp 28ppu 8ppT
37801L15(u:)2T| - 81“ wpt 2959“ UU.'(T' )C 1-22.&.5 u't (‘_[‘
56ppT upzuT 8ppT2 p2uT2

911 5 3
22E-B-(T')3 - 21 > wu' " - 2020H° omipn _ 22;&_ u'T"

p2T5 8ppT 16ppT 8p uT
371 b) 3

11 3 Pt l#llu "o 675[.1 u2Tm + O(“h.)

42T 8p°T 16ppT

(67)

(68)

Equations (62) together with equations (67) and (68) are now the

equations of motion.

the flow far upstream and far downstream

RT; RT
ui+_l=u‘f+—i=

3
ui uf m

=1V ]

2
ui2 + S5RTj = up® + 5RTy

By imposing the Rankine-Hugoniot conditions on

(69)
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where subscripts i1 and f refer to upstream and downstream conditions,
the problem becomes that of the plane, steady shock wave.
Series Solution of Equations for Plane Shock Wave

Take a series expansion in powers of Grad's expansion parameter €
which is defined as

€ = (|25 - 16 18 (70)
P2
In a Maxwell gas the Mach number squared is
M2=_3£u_2.=_3.f
P 5RT

and the Rankine-Hugoniot conditions (69) become

5My SM¢
i M 2 f 2 m
1 Mp
Then
2 2
M.” -1
25 - 16 M = po5| 2
Pe 5M;< + 3
and
2
15(\M;” -1
€=__(%__-—) (71)
MT+ 3
Let t and w Dbe the dimensionless forms of temperature and
velocity defined by
u=Ll2+ & (72)
m 8

FOlHE
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P2 15 + 2¢t - €2
AR (73)
m“R o
2
p-n_-m 8 (74)
u P 54+ ew
mRT _ P 15 + 2et - € (75)

u 8 5+ ew

and the Rankine-Hugoniot boundary conditions of equations (69) reduce to

the simple form

-~

w5_=l
> upstream when x — -w
ty = -1
J
: ( (76)
We = -1
S downstream when x — o
7 o
Other parameters are introduced, one of which is
H_ A 4A
L=H_-.L0 - (77
n - TR (77)
Let
L._T W
L, T4
; ( (78)
2
T, = Tog = =T
* T 1% OJ

Here 1, 1is a reference length corresponding to p, at the temperature

Ty which occurs when M =
Let

= % 2

1, so that T, 1is the stagnation temperature.

2 _ 2
- 15 + 2¢t € (79)
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50
L _T (80)
L 7%
where
5 _ &
T, = =21 - = (81)
64 25
The dimensionless length, used in place of x, is then
256 €T,x
q =22 x (82)
525 Ly

and this is related to Grad's reference length

ECE W
by
E2
= - & 84
1 < 25 (84)
Equations (62) now become in terms of t and w
2e(w + t) + eg(‘w2 - l) + 8(5 + ew)E%E =0
(85)
10e(w + t) + €2(w2 - l) + 16(5 + ew)ﬁx— + 126m =0
P 2 x
From the definition of 1
4 _256 > a (86)
dx 525 Ly dy

s0 if the prime is now used to denote differentiation with respect to

n, the expressions for Pii) and qu) given by equations (67) and (68)

become
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R S W O
XX - - 15 + 2¢t - €2)w' + —22¢_(5 4+ ew){15 + 2¢t - €2)(wt)2
P 3(525) 9(525)2
5 I
v 8 (54 ea)2(15 + 2et - Dut + 26T (54 )2t
2 >
5(525) 5(525)
l6€l+ 2 8(':3 PR
(54 e (81) + 5(5 + ei) (15 + 2¢t - e2)t
(525) (525)
L
- s2¢ (5 + €W)2(15 + 2¢t - 62) [5(15 + 2¢t - 62) + (5 + €W)2Jw‘"
3(525)3

_ 266 (5 + ew)3(15 + 2¢t - ez)t"'+ 0( 5)

(525)°
£ =\
\JiJ 2 3
> S (15 + 2et - ¢ 2)gr 4 26 5(5 + ) (15 + 2et - e2) Zyr
P2 1120 8(525)
I
hle 2)rs __276_ 204112
+ —€ (5 + ew)(15 + 2et - 2)w't' + (5+€W)(t)
810(525) ( ) guo(52
P EE (54 @)2(15 ¢ 2et - R)e" + (154 2t - &)2(u)°
1680(525) 2(525)°
4
e (54 ew)(15 + 2et - e2)Zym
210(525)2
et o a)2(15 + 2¢t - €2) 5
4(525)3
- 6756 5(5 + ew) (15 + 2et - €2>t"'+ o(e5)
8(525)

When these are substituted into equations (85) and the terms arranged

in increasing powers of € only as far as eu, the differential equations
to be solved are
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3
26(t+w)+€2<w2-1--l—6 )+16'E (—2t+3ww’+2—ow"+&t")
21 105 3 21 T

+ 6l¢el*[5 = 2EW g g L* 2ty 2 (3w + t)t" + L(w')? 4 2wt

105 60 105 9 63
2 2 80 m 22 m
+ £ (t ! ) - W -2 _ t =0 ( 87)
105 ()2 BT ]

2f2 -1 .32 12, , 8 & I
lOe(t+w)+e(w 1 =V 7t)+105[ 5(.2t+3w)w 3

- “22 o s 151 go| 4 16" _2 t' - 2(2tw - 5)u' + (764t + 873w )w"
7 525 3 63

+ -1—5]-‘(t + 3w)t" + 3_88(w')2 _12 w't' + _Z(t )@ - 6721 ¢m
21 6% 17

- 13100 wm =0 (88)
(21)%

Expand w and t in a series in powers of ¢

_ 3
W-—Wo‘l" Wl+ 6%124' €w3+.
(89)
b=ty 4 ety + 62t2+ et

0 3-i-.

so that

w2 = w02 + 2ewowl + e2 (wlg + 2w0w2) +

_ ' 1 t
tw! = towo + e(towl + tlwo) + .

and so forth. Substituting equations (89) into equations (87) and (88)
and arranging terms in increasing powers of € up to € give two very
long equations which will not be written out since the next step consists
in setting each coefficient of the powers of € equal to zero. The
final result is a pair of differential equations for each power of e

as follows:

EAC T o
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to + vg = (90)
ti + W +—(w -)-iw'=0 (91)
1 1 0 21 'O
16 ' 6 '
5(ty + wp) + —-(w e 1) -5t ¥ -2 %' =0 (92)
- ji L lé_ v _ _§_ ' 32 " 32 " o_
t2 + W2 + Wowl o1 Wi 315 toWo 105 WowO + (2 )2 Wo + 735 to =0
(93)
16 6 32 16 I
to + + W - Wy e Dty et L e Ve — tata!
5(ta + w2) + Wou1 - oW1 - 21! - S to¥o' - o= Volo 35 toto
+ 1688 wo" + 604 to" =0 (o4)
2205 35
t3 + W3 + %Wle + WOW2 - % W2' - ;‘—%(towl' + tle') - %(Wowl' + WlWO:)

+ (Zi)e wl" + 2—; t," + 15875 (5 - 2towo)wo' + 22?)5 (3wo + % to)won
(lcé);)g(}wo + to)t-o" + %(wo')e + 6_22—5 wo'tg' + (_l-?;?(te')‘?
5(ts + v3) + ‘2“ W1® v g ;i w2l o- % ta' - 2?5("0"’1' + twg')
- %(wowl' + ') - %(totl' +titg!) + ;g%ié v+ % 5"
* b’ - T t00’ * 35 ¥0' ¥ %E%% to¥o" *+ L ko

l l " 151 " 388 12 2 5 1 [] l l |2
+Zi—toto +_77—th0 +g(wo) +—’9r—wot0 +E%_(to)

_ 6721 2" 13100 W "] =0 (96)

wy O (o2 ©
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The solution is found step by step. From equation (90) to = =W,

which when substituted into equation (92) and t; + w1 1is eliminated
between equations (91) and (92) gives for L0 the differential equation

dw
=_0_y, 2.
The solution is
wg = —to = -tanh 7 (98)

and equation (91) or (92) becomes

ty + Wy = - %(wo2 - ) (99)

Eliminate t, + W, between equations (93) and (9%), obtaining with
the aid of equations (97) to (99) a differential equation for wj

dw
.__].: - 2wowl = ?_g_wo(woe - )
dn 245
whose solution is
- - 20 - wg¥)r0g 1 - o)
Wy = - 22 (1 - wa“)log |1 - w (100)

Then from equation (99)

t) = (1 - Woe){f% + %ga loge(l - wozi‘ (101)

So far the results are the same as those the Burnett equations gave
for Talbot and Sherman. In fact, continuing in this manner, the form of
the solution for W, 1s also the same, being

2
Wy = (l - wog){;An + Bwg + Cwo loge(l - woz) + Dwg loge(l - wogﬂ }
(102)

However, the values of two of the constants A and B are different.
The constants are

=W - E



W - E

.
\O

~N

A-—22 _(2 ; = -0.00698042
(2&5)2 245

B-_215 _ _ A =0.054960
L9(245) .

__1(29\2 _
C=-= = ~0.00700541
2@&9 005

(103)

29 \2
-[222)" = -0.00350270
(u90) 55027

P

Substitute equations (100) and (102) into equation (89) and the
solution for w TDbecomes

W o=Wg - € %%6(1 - wo2)loge(l - w02) + 62(1 - woz){}An + Bwg
2)

+ Cwg loge(l - w02) + Dwol}oge(l - WOE)] j (104)

This can now be used to find the thickness of the shock wave, which will
be taken to be the maximum slope thickness defined by

By (n) = L —2 (105)

[aw\

Kdﬂ)max
dw

Now Wo = Wy = -2 while == is a maximum where
1 d‘r]

QE! = Differenti-
dn2

ating equation (104) twice, the expression for QE% is found as a series
dn

in € to terms in 62. Since the equation 93% = 0 need not be solved
dn
exactly and probably cannot be solved so, the solution is taken to be

n=Y =Yg+ €¥] + ¥p + . . . (106)
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Taking Yy = O, which simply fixes the origin, and using the infinite
series for the hyperbolic tangent

3
g = -tanh Y = -e¥) - €°Y, + %(eYl + e2Y2) -

-€Yy - €2Y2 + O(es)

|

this value of vo is substituted into the expression for d . The

N

) 5 dn W
result is to terms in ¢ 1
2 3
4w = 2€¥; + 2€2Y2 +e2d 4 0(63) =0 b
dﬂ2 n=Y 245
with the solution
- -2
490
Yo =0
Then .
(Q) = =1 + Kez
dn/max
where
2,29
k=Y, “+ =Y. - A-B=-0.051483
Using y 4instead of 1 as the dimensionless coordinate, the veloc-
ity thickness of the shock wave is
w Wf Wy
&, (v) =
dn /dw
dy \dn/max
Using the values just calculated for Ve - Wy, (%3> , and the deriva- -
N/max

tive 31 from equation (84)
dy -
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v _ -2 - - 1\2 . -1
) - (2 - <) (1 62) 2[ (“ 25)e * ]
- - K - —
25
=2(1 - 0.011483¢2 + . . ) (107)

This agrees best with the result in reference 10 for a Navier-Stokes
profile for a Maxwell gas, which in the present notation becomes

8 ¥(y) =2(1 - 0.01518¢2 + . . .)

In order to compare the present calculated thickness with the
results of reference 9 a transformation of equation (107) must be made.
Since

By (x) = Sm"(y)(%)-l

and
&y .4 e
dx 35 Ly
B (x) = 22%(1 - 0.011483¢2)
2€
or
_ 2¢ 1 - (108)
5mV\_~) 351 - 0.011483¢

with € given by equation (71). Calculated values of equation (108)

are plotted in figure 1 together with two theoretical curves and the
experimental data taken from figure 8 of reference 9 and from reference 12.
The data found by the optical-reflectivity method as taken from refer-
ence 1l and also plotted in figure 1 do not agree with the same data
plotted in figure 8 of reference 9. This may be due to a slightly differ-
ent estimate of Lyx. All three of the theoretical curves are based upon

the viscosity law for Maxwell molecules (p «T). It is interesting that
the present calculations lead to a result not considerably different from
the Navier-Stokes curve.
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The theoretical velocity profiles through the shock wave are shown
in figure 7 of reference 9 at two initial Mach numbers for the Navier-
Stokes, the Burnett, and the 13-moment equations. Figure 2 of the
present report reproduces two of these profiles, the Navier-Stokes and
the Burnett, for My = 1.576 together with points calculated from
equation (104) of the present paper. The new points agree best with the
Navier-Stokes profile as the flow enters the shock wave and with the
Burnett profile as it leaves, but on the whole the agreement is with the
Navier-Stokes curve,

Finally, a comparison of the shock-wave thickness in terms of
upstream mean free path Aj can be made, where for a Maxwell gas

16 [5 Mimy
As = —/— (| ==
1 5 d;; pu

Since
u 5! M
L 6 - 6« . 2 (109)
K 1
* * 1+ M

Apfog*(x) is the product of equation (108) with equation (109). Fig-

ure 3 is a comparison of the present calculation with the experimental
data and two theoretical curves taken from figure 9 of reference 9 and
from references 11 and 12. The agreement is again similar to that of
figure 1.

The agreement of the present calculation with the Navier-Stokes
theory and with the experimental data is probably fortuitous, although
the series method of calculation does work better for the present method
than it does for the Burnett and l3-moment equations. All of these
approaches are essentially based upon the assumption that deviation of
the flow from equilibrium is small and that the gradients of velocity,
temperature, and pressure are not large. The series expansion breaks
down, of course, if € becomes too large and although € —» 3 as
M; — », one cannot be too sure of the convergence of the series for

€ 2 1, which occurs when M; 1is of the order of 1.3 to 1.4, For the

profile shown in figure 2, € = 1.44, which is already large. This
difficulty can be overcome by a numerical calculation of the same type

as Sherman performed for the Burnett equations. To integrate numerically

the equations of Maxwelliam iteration, or even the exact equations of
transfer, for this simplest case of one-dimensional flow would not be
much more difficult than for the Burnett equations. It also seems that
a type of iteration, not in powers of u/p, but of the method earlier
called Truesdell iteration, might be devised for the shock-wave problem
as well.

FO- X
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CONCLUDING REMARKS

Most of the present paper has been devoted to an exposition of the
Ikenberry-Truesdell theory of the ideal monatomic gas. For continuum
and near-continuum flows this theory, following the ideas of Maxwell
and Grad, replaces the Boltzmann equation of classical kinetic theory
by an infinite number of partial differential equations in the moments
of the distribution function. OSince attempts to solve the full Boltzmann
equation have been hopeless, it would seem that the solution of the
problem is thus made more accessible., However, the solution of an
infinite system of differential equations may not be any easier, although
it presents a different sort of problem which could give useful and
rewarding results.

The equations of transfer are independent of the form of molecular
distribution function. The latest research on boundary conditions shows
how a knowledge of the distribution function is necessary to formulate
these conditions. Hence, any properly formulated boundary conditions
could be combined with the equations of transfer for use in boundary
value problems. However, the success of the Navier-Stokes equations as
the basis of the solution of problems in slip flow discourages anyone
in the use of the more complicated equations of Ikenberry and Truesdell.
More physical insight into such problems seems to be the present need.

In order to obtain equations which do not require any more knowledge
of boundary values than those of the known physical variables of state,
the method of Maxwellian iteration was presented in some detail. Another
purpose for presenting this method of iteration was the correction of a
few errors in the original paper. The gapplication of the resulting equa-
tions was made to as simple a flow problem as could be formulated and
this was the shock-wave problem. The results did not indicate any supe-
riority of the new equations over the Navier-Stokes equations although
this is probably because a series type of solution was made. Another form
of solution of this problem or of some other problem should be found
hefore the theory is abandoned and might offer a fertile field for theo-
retical research.

University of Washington,
Seattle, Wash., July 30, 1958.
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APPENDIX A

RELATIONS. BETWEEN MOMENTS AND SPHERICAL MOMENTS

Equation (5) of the text defines the moments

= -
pili2...is = 0011012 ° s cis = PRg = m o QSF ag (Al)

while the spherical moments are given by equation (22)
Por(s = pYerls = mf czrys(E‘)F ac’ (a2)
o0

Taking Q =1, ¢y, . . . , equation (Al) gives, using the fact that
dE’ = d¢ in velocity space:

Q= 1:

p=mLFd§*=Po,o=P (A3)

since the subscript r or s will not be written down when r =0 or
8 = 0.

c10

Q
pey = mf cyF aF =Py =0 (Ax)
Q = CiCJ:

pc;C, = P =mfchd§=me Fac+ =5 mchdc
19 7 Py TR % N F s Eia

from the definition of Y;; in equation (20). Then equations (A2) and
(8) give

Pij = Pyy+ P51J (as5)

FOiH-HE
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which is the same as equation (10). The contracted form is
Pii = 3p = P2| (a6)
since Yj4 = O.

Q = cycyeis

- 3
= Pigx + 5 Fa|(185x) (A7)
with the contraction

Pijj = Pp|y = 2q4 (a8)

since Pijj=0 and
3P =P P =
P21 (183) = Foys®yy * Fo 1y + P21 81y = Pyt
hile Poyy=m | c2c,F de = 2q; b tion (7)
while 2|y =W c%ey. ¢ = 294 by equation (7).
Q0

Q = cyejyeey:

~ -
pi,jkl = mL cicjckch de

]

' 6 [ =2 1 4
mL Yijle ac + ‘..7 mjﬁo c Y(ijakz)F ac’ + g mj; c 5(i,jskl)F ac

1
Pija ¥ % Py (1581) + 5 Pu1®(14%a) (A9)
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with the contractions

- 2.. Pon | o2 =1 -
[+ 4} o0 00
“P. ..+ =P 5. (A10)
2|13 3 4 °i3
p -m | ctrap-P (A11)
mml1l o hl

Q = CiC3CKkC1Cm¢
P3 jxkim - mjw €13k %n aE
- mfm Y3 eanf ac + 1_90 mfm c2Y(ijk61m)F ac + % 5(ik51mmLc"Yi)F ac
=P jxim * qu Po(15kPim) * % Py (18 5xP1m) (A12)
with the contractions
Py ey mfw cPese o F E = mfm cPY; o F ac + % ma(jk_/; chey)F ac
= leijk + % PM(iBjk) (A13)
Dokl = m[m che,F A = By |4 (A1)

Then

3} 10 5
Pi jkim = Pijkim = 9 Prr(ijxlim) ¥ 21 Prrss (10 5k01m) (A15)

WX
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Q =c cicj:

1j1imm

= R -
=mf cl*cich dg =mf CYijF de +
o0 [}

1
Pulig * 3 P61%43

with the contraction

pkk?. rm P6|

These are all of the relations used in this paper,

47

1 6 —
Ssiijchc

(A16)

(A17)
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APPENDIX B

SAMPLE CALCULATIONS OF L(Y

or| S) AND C(Y

or| s)

To illustrate the technique of evaluating L(Y2r| s) and C(Y2r| s)
the calculations are carried out in detail for erls =cYy.

Expression (12) for L(Q) with Q = cth = cuci becomes in this
case

L(c Yi) = (pchY ) + pc YiE + pCy %(chci)uj X - i Jk xP a:j (cl*ci)
+ —‘~§-3(¢)c’j i€ ) (B1)

The averages are given by equations (5) or (22) so

by —m [ oMyF e -
pCYi'mijYich_Phli

and

o Zh )
u'j’kpckgg C Ci

) u - o) 2 -
ui,kmjw ¢ Y, F dc + huj,kmjm c cicjckF dc

"

3
U kPulx + “uj,k(Paujk * 5 By (is,jk))

"

12
uy kPulx + 2P2]1,jk(“,j,k + “k,g) * S Py 1(183k)%5,x

using equation (Al3). Now

_ 2 m
uj,k + uk,J = 2Ejk + 3 Esdk

sO

2Pp |13k (U3,% * Uk, ) = 4P2i1gEix

W X
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and
- _ _5
3Py | (183k) U,k = PPufs * Pu| 5(9g,g * ¥y,1) =5 ERy|y + 2Py |4y
S0
T 8 4
Then

-1 ch ac’ - E 2 Y
S pik,km~/; c 5 pjk,km _ c cicJF de

1 n
- 5 Pik,kP gi;(c °i5

oSG o

1 N 2 1 k4 J) -
= - = P -2 m cY .,+=2¢'d F dc
o Puk,ku] T 5 Pax fm( 1373 %71

-1 _ b
30 Pik, Kby o Pk, k2|1
and

pcjcicl* = mf chcicJF ac = mf (cthJ + % cGBiJ)F ac

1l 45
Hence

. 8 L
5 3

L : = 1o,
T 3p Pij,aFu] - % ka,kP2|ij * 15,37 3 61,1 (B2)

which is the last one of equations (25) in the text.

The calculation of C(erls) is not so simple since it involves

the evaluation of the four integrals in equation (13). In a long section
toward the end of chapter 1 of reference 6, Ikenberry and Truesdell show
. that this collision integral can be expressed exactly as a polynomial in
the moments, provided the molecular model is that of Maxwell molecules.
In the process they obtain certain sﬁ?ple expressions for these integrals

. which will now be used to evaluate C cth .
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S_’mceLL Y; =cy and Q = cL‘Yi = cl‘ci, in this case
8Q = (c*') cq*' + (C')uci‘ - (c*))*ci* - c’+ci according to equation
Equations (18) and (19) give

¢! = -v'
Ze e
so
(M4 4 = 2(2 4 42)% 4 87 . D7
() - ot = 8(v2 + W) (T . W)
and
sq = [(ex) = (e ryt - [(en® - My, + [(ex)® 4 (0¥ - (em - M,

- 8(2 + w2) [P - Py - 7 vy + 8[@ - D7 - @ 2wy

using the fact that (v')2 = v°.

Introducing the spherical harmonic
N _ 1
Yij(v) =vyvy - 3 vzﬁij

- -
the mean rate of change in Q becomes with v - w = vJ.wJ.

5Q

8(v2 + we)wj(vi'vj' - Vivj> + &iijk(vk'vj' - vkvj)

B8(v2 + w2)u [y 5 () - vy ()] + B [r ) - 1 3]

(17).

(B3)

(B4)

FOl-H
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The integrals (13) for C(Q) can be split into the four integrals

2x
c(q) =f F dﬁf F*dg*f vb dbf 8Q de
0

Equation (7.1) of reference 6 gives a formula for the integral over e
of the spherical harmonic Yg (¥') which is

2n - -
Jf Y. (v')de = 2n¥g(v)Pg(cos B)
0]

with Pg(cos ) being the Legendre polynomial and @ = n - 26. Hence

S 25
\/ 5Q de = l6n(v + W ) [Pe(cos g) - i]Ylj(v)
0

+ lénwiijk[?g(cos g) - iJij(;a (B5)

For the next integral the formula is a special case of equation (7.6)
of reference 6 or

B, = 2nvj;ﬂ [1 - P5(cos ¢)]b Z_; ag

SO

o0 21
Jf vb de[ dQ de
0 0

-8B IKV + W )wJYlJ(_3 WV Wy Jk(v)]

-8B, [(v2 + w2) (¥ . ?,?)vi - %. V2(V2 + we)wi
7B - o] -

The last two integrations over dE = d& and dE* = d* require a
return to the original variables ¢ and c¥*. Using the identities

(c*)LL L B(V2 + w2)(\7 . W)

(92 + @ = 2(v2 + w2)
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4ve = (c*)2 - 2(c* . ¢) + c2

2vy

cy* - ¢4

W2 = (c%)2 4 2(c* . o) + ¢
16vu° = (c*)LL - 4(c*. D2 4+ 2¢2(c*)? & ct

after simplifying and collecting terms integral (B6) becomes

o - 21 1 " 1 )
\/; vb db\/é 8Q de = -leé(c*) (ci* - ci) tdec (ci - ci*)
- c2(c*)2(c1* + ci) + -;'- c2cjcj*(ci* + Ci)
+ '31'(‘:*)2°j*°3 (ci* + ci) + % cJ*ck*cjck(ci* + ci)]

(B7)

Multiplying this result by m2F'F* and integrating over ¢ and o¥
gives, since

*LI» **_')*:. )4- —’_
mfm(c)cich mLccich'Ph|i

m] ci*F*d?* = mf ciF dc?: (0]

o« [« 4]

mj F*d?*:mf Fdc = p
[+ 9] 00

2 Lr e 2 —
mf(c*) ci*F de” = mf c ciF de’ = 132'1 = eqi
[ ]

-]

FORE
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m | (e*)2F*c* =m | c2F ad®= P
o w 2|

)  *c XFXGe* = e =
m\/°° cy cj F*de m\/; cich de pij Pij + paij

3p

*q % _ - _ 6
mf ci*cj*ck*F dc¥* = mf cicjckF de = Pijk = Pijk + 3 q(iajk)
00 00 E
the collision integral
B L
- .2 . s 2
mC(Q) = i (pP’-I»|i 12pqi + 3 PiJQJ + 3 pi,jkpjk)

Because Pijj = ij = 0, ajksjk = 3, and

=l’ . \  thd . R
q(iajk) 5(9185k + qjaki + qksij) this simplifies to

4 nBy 28 2 28
wo(dy) = - T("Pul 173 Pt 3 Pkt 15 Pijqj)

which is, with nBp = %, the next to the last of equations (36). It is

the corrected form of equation (8.10) of reference 6.
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APPENDIX C

USEFUL DERIVATIVES

From p = RoT and pu = m, if the prime indicates the derivative
with respect to x,

p' p' T
— T — e —
P P T
J t
E._+ u__ = O
o) u
SO
pl IIII ul
P T u
1\ u' ’
OBt
AlSO, .
(l Yoo u'
p) pT  pu
1
ﬁ - 2 p2T| _ peul
p pT pu
e" o (u.)g o
p ul u
P_'i=2£1_ll)3_£_2u'T'+T_"_
p ul u uT T
The entropy
-2 1o b
B €e 3373
S0 *
1 1]
B' = éT_-i- E_.
2 T u .

=W



W

and

SO

Then

g 23 T8 3 (12wt (w)?
2 T 2 o2 u ul

The coefficient of viscosity

B = KT

v _ B o

H T
(pu')' = % u'T' + pu"
(ur')" = B(T)E + pr"

(E ufy = u'T" + iL(u')e + By
P oT pu P

(o) —eur 2w
p pT p

] -~
kP uT'> = BR_ u(T')2 + BB e 4 BE g
pT? eT T

}.12 un)' =D .Lg u"T' + ﬁ u'u" + ﬁ um
pu P

3 pT
B 2 ! 2 L2 2
E—(u')z =2 B (un)lrr ¢ Euy)Z s 2 am”
P J eT pu P
[ 2 7t 2 2
E—(u')2 =2l _(u)er 4 2 By
pu ouT pu
o) t
(E T") T I N b2 g
pT pT2 puT pT
) ' 2 2 2 2
L u'T'> SR un ()2 s B () 4 By ¢ By
pT pT puT pT oT
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T
O |F
2[5
o

=3
~
[}

n

2 2 2
E_ur” + 2-5 uT'T" + B ur™
o)

2 ' 2 2 2

(E-— uu") =2k "t + 2 Bt o+ B g™
P pT p P

[ 2 ' 2 2

-u__(TI)2 = __p'__ ul(Tl)2 + 2 u_e. T'T"

pT2 puT2 pT

E u(T')2] =2 Esu(T)8 + 2 E_E uT ' T"
pT pT

pT
2 ' 2 2 2
<__ u2T"> = E‘E WT'T" + 3 EE w'T" + B e

oT P pT

eT pT pT

2 ' 2 2 2
[—(u')2:| = B (u')21 + tl——(u')3 + 2 B gyt
pT Pu p

]
(E— uu") = EE wu"T' + 2 ﬁ utu" + EE uu™
pT p P

2 2 2
=2 L(u')zT' PR S (LN SR, L
pT pT pT

T
’dlt
Hl
=
o
H
~—

1
£ qr) - o R v, EZE_ W' 4 B2 g
p2T p2T‘2 p=uT p2T
2 ' 2 2 2
Hep (T')2 - MK P(Tl)3 + L P ul(Tl)2 + 2 L=p T
212 5213 o2uT? 0272

2 2
o M D u'(T')2+i-p—u"T' +ﬁ—u'T"
p2uT2 p2u'I‘ pEuT

N
T |F
[\o1 A
o |'o
3

o
=]
~——”’
]

2

u2 ' 2 ) 2 u
— uwu'T!’ =u——uu'(T')2+ 2 B (u")2 T + B o+ o
2 oT pT

T

uu'T"

2 ' 5 2 2
[“ u2(T')2} = E‘E w'(T')2 + 2 E"E w'(T)e + 2 5_5 wlr' "
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Figure 1.- Shock-wave thickness in terms of reference length L.
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Figure 3.~ Shock-wave thickness in terms of upstream mean free path.
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